

Δ

Acceleration and Velocity, Directions

- When an object's velocity and acceleration are in the same direction, the object is speeding up.
- When an object's velocity and acceleration are in opposite directions, the object is slowing down.
- When the object's velocity is constant, the acceleration is zero.
- When the object's acceleration is constant, NOTHING to conclude.
- o Force and acceleration are both vectors and directed in the same direction.
- The word deceleration has the connotation of slowing down.

Mustafa Al-Zyout - Philadelphia University

29-Sep-25

9

Notes About Acceleration

- Negative acceleration does not necessarily mean the object is slowing down.
- If the acceleration and velocity are both positive, the object is speeding up.
- If the acceleration and velocity are both negative, the object is speeding up.
- If the acceleration and velocity are of opposite signs, the object is slowing down.

Mustafa Al-Zyout - Philadelphia University

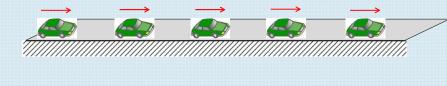
29-Sep-25

Producing An Acceleration

Various changes in a particle's motion may produce an acceleration.

- The magnitude of the velocity vector may change.
- The direction of the velocity vector may change.
- o Both may change simultaneously

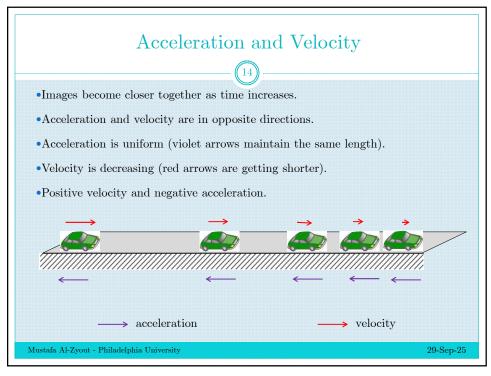
Mustafa Al-Zyout - Philadelphia University


29-Sep-25

11

Constant Velocity

- Images are equally spaced.
- The car is moving with constant positive velocity (shown by red arrows maintaining the same size).
- Acceleration equals zero.


→ velocity

Mustafa Al-Zyout - Philadelphia University

29-Sep-25

Acceleration and Velocity Images become farther apart as time increases. Velocity and acceleration are in the same direction. Acceleration is uniform (violet arrows maintain the same length). Velocity is increasing (red arrows are getting longer). This shows positive acceleration and positive velocity. acceleration velocity Mustafa Al-Zyout - Philadelphia University

13

A Particle Under Constant Acceleration

Constant acceleration indicates that at any instant during a time interval the instantaneous acceleration is the same as the average acceleration.

$$a = a_{avg}$$

$$a = \frac{v_f - v_i}{t_f - t_i}$$

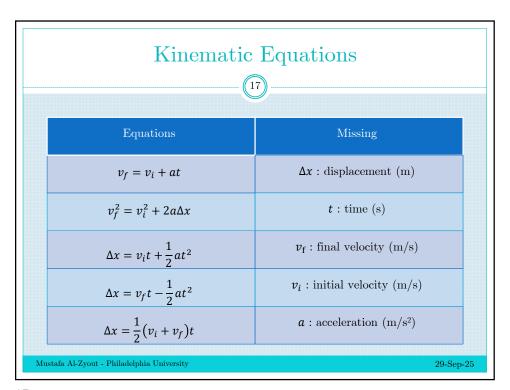
Common practice is to let $t_i = 0$, $t_f = t$ and the equation becomes:

$$v_f = v_i + at$$

Mustafa Al-Zyout - Philadelphia University

29-Sep-25

15


Kinematic Equations

- o The kinematic equations can be used with any particle under uniform acceleration.
- The kinematic equations may be used to solve any problem involving one-dimensional motion with a constant acceleration.
- You may need to use two of the equations to solve one problem.
- o Many times there is more than one way to solve a problem.

Mustafa Al-Zyout - Philadelphia University

29-Sep-25

When the acceleration is zero,

$$v_f = v_i = v$$

$$x_f = x_i + vt$$

The constant acceleration model reduces to the constant velocity model.

Mustafa Al-Zyout - Philadelphia University

29-Sep-25

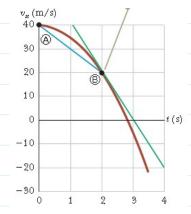
Average and Instantaneous Acceleration-1

Friday, 29 January, 2021 21:33

Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan

R. A. Serway and J. W. Jewett, Jr., *Physics for Scientists and Engineers*, 9th Ed., CENGAGE Learning, 2014.

J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY, 2014.


H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016.

H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013.

The velocity of a particle moving along the x axis varies according to the expression: $v = 40 - 5t^2$, where (v) is in (m/s) and (t) is in seconds.

 \circ Find the average acceleration in the time interval (t = 0) to (t = 2 s).

 \circ Determine the acceleration at (t = 2 s).

(A) Solution

Find the velocities at ti=tA=0 and $tf=t_B=2.0$ s by substituting these values of t into the expression for the velocity:

$$v_{x_A} = 40 - 5t_A^2 = 40 - 5(0)^2 = +40m/s$$

$$v_{x_B} = 40 - 5t_B^2 = 40 - 5(2.0)^2 = +20m/s$$

Find the average acceleration in the specified time interval

$$a_{x,avg} = \frac{v_{xf} - v_{xi}}{t_f - t_i} = \frac{v_{xB} - v_{xA}}{t_B - t_A} = \frac{20m/s - 40m/s}{2.0s - 0s} = -10m/s^2$$

(B) Solution

Differentiating the position function, we find:

$$a_x = \frac{dv_x}{dt} = \frac{d}{dt}(40 - 5t^2) = -10t$$

Find the acceleration at t=2.0 s

$$a_x\Big|_{t=2s} = (-10)(2.0)m/s^2 = -20m/s^2$$

Because the velocity of the particle is positive and the acceleration is negative at this instant, the particle is slowing down.

Average and Instantaneous Acceleration-2 R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014.

Friday, 10 September, 2021 09:09 Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan.

- J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY, 2014.
- H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016.
- H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013.

A particle's position on the x axis of is given by $x = t^3 - 27t + 4$ with x in meters and t in seconds. When the particle is at rest, what is its acceleration?

Solution

Differentiating the position function, we find:

$$v(t) = -27 + 3t^2$$

Differentiating the velocity function then gives us:

$$a(t) = +6t$$

Setting v(t) = 0 yields

$$0 = -27 + 3t^2 \Rightarrow t = \mp 3 \text{ s.}$$

Thus, the velocity is zero both 3 s before and 3 s after the clock reads 0.

$$a(t) = +6t \implies a(t = 3) = 6 \times 3 = 18m/s^2$$

At t = 3s, v = 0m/s and $a = 18m/s^2$. Then, the particle is about to move.

Carrier Landing Friday, 29 January, 2021 21:33	Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan. R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014. J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY,2014. H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016. H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013.
A jet lands on an aircraft carrier at a speed of 63 m/s.	
• What is its acceleration if it stops in 2 s?	
• What is its final position?	
(A) Solution	
We use the equation that does not involve position:	
$v_{xf} - v_{xi} = 0 - 63$	
$a_x = \frac{v_{xf} - v_{xi}}{t} = \frac{0 - 63}{2} = -31.5m/s^2$	
(B) Solution	
We use the equation that does not involve acceleration:	:
$x_f = x_i + \frac{1}{2}(v_{xi} + v_{xf})t = 0 + \frac{1}{2}(63 + 0)(2)$	(2) = 63m

Friday, 29 January, 2021

Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan.

- R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014.
- H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016.
- H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013.

A car accelerates uniformly from rest to a speed of $100 \, km/h$ in $18 \, s$.

- Find the acceleration of the car.
- Find the distance that the car travels.
- \circ If the car brakes to a full stop over a distance of 100 m, then find its uniform deceleration.

Determine the corresponding speed in units of (m/s)

$$v = 100 \frac{km}{hr} = 100 \frac{km}{hr} \times \frac{1000 \, m}{1 \, km} \times \frac{1 \, hr}{60 \, min.} \times \frac{1 \, min.}{60 \, s}$$

$$=\frac{100\times1000}{60\times60}\frac{m}{s}=27.8 \ m/s$$

(A) Solution

We use the equation that does not involve position:

$$a_x = \frac{v_{xf} - v_{xi}}{t} = \frac{27.8 - 0}{18} = 1.54 \text{ m/s}^2$$

(B) Solution

We use the equation that does not involve acceleration:

$$x_f = x_i + \frac{1}{2}(v_{xi} + v_{xf})t = 0 + \frac{1}{2}(0 + 27.8)(18) = 250.2 m$$

(B) Solution

We use the equation that does not involve time:

$$a = \frac{v_f^2 - v_i^2}{2\Delta x} = \frac{0^2 - 27.8^2}{2 \times 100} = -3.86 \, m/s^2$$

Friday, 29 January, 2021 21:33

Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan.

- R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014.
- . J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY, 2014.
- H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016.
- ☐ ✓ H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013.

A remote-controlled truck moves along the x-axis with a constant acceleration of $-2 m/s^2$. As it passes the origin, its initial velocity is 14 m/s.

- (a) At what time does v = 0 (i.e. when the truck stops momentarily)?
- (b) At what position does v = 0 (i.e. when the truck stops momentarily)?
- (c) At what time is the truck at x = 24 m? and
- (d) What is its velocity then?

(a) Solution:

We use the equation that does not involve position:

$$t = \frac{v_f - v_i}{a} = \frac{0 - 14}{-2} = 7s$$

(b) Solution:

We use the equation that does not involve time:

$$x_f = x_i + \frac{v_f^2 - v_i^2}{2a} = 0 + \frac{0^2 - 14^2}{2 \times (-2)} = 49 \text{ m}$$

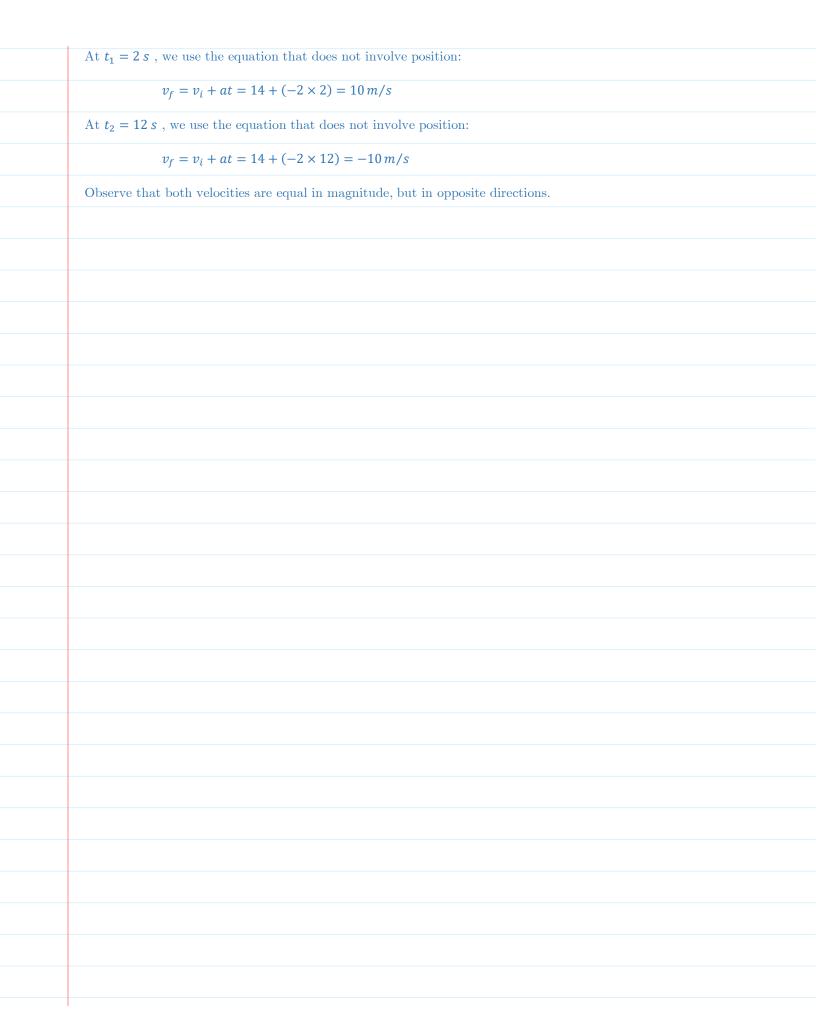
(c) Solution:

We use the equation that does not involve final velocity:

$$x_f = x_i + v_i t + \frac{1}{2} a t^2$$

$$24 = 0 + 14t + \frac{1}{2} \times (-2)t^2$$

$$t^2 - 14t + 24 = 0$$


Solving this quadratic equation yields:

$$t = \{2s, 12s\}$$

Thus, $t_1 = 2 s$ is the time the truck takes from the origin to the position x = 24m.

Furthermore, $t_2 = 12 \, s$ is the time the truck takes from the origin, passing the point x = 24m, reaching the point $x = 49 \, m$ and returning back to x = 24m.

(d) Solution:

